
Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Concurrency and Session Types

Rob Sison
UNSW

Term 3 2024

1

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Definitions

Definition

Concurrency is an abstraction for the programmer, allowing
programs to be structured as multiple threads of control, called
processes. These processes may communicate in various ways.

Example Applications: Servers, OS Kernels, GUI applications.

Anti-definition

Concurrency is not parallelism, which is a means to exploit
multiprocessing hardware in order to improve performance.

2

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Sequential vs Concurrent
We could consider a sequential program as a sequence (or total
order) of actions:

• • • • • • · · ·

The ordering here is “happens before”. For example, processor
instructions:

LD R0,X LDI R1,5 ADD R0,R1 ST X,R0

A concurrent program is not a total order but a partial order.

• • • • • • · · ·

◦ ◦ ◦ ◦ ◦ ◦ · · ·

This means that there are now multiple possible interleavings of
these actions — our program is non-deterministic where the
interleaving is selected by the scheduler.

3

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

A Sobering Realisation

How many scenarios are there for a program with n processes
consisting of m steps each?

n = 2 3 4 5 6

m = 2 6 90 2520 113400 222.8

3 20 1680 218.4 227.3 236.9

4 70 34650 225.9 238.1 251.5

5 252 219.5 233.4 249.1 266.2

6 924 224.0 241.0 260.2 281.1

(nm)!

m!n

4

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Shared-variable vs Message-passing

Explicit communication between concurrent processes falls broadly
into two classes:

Shared-variable (or shared-memory) concurrency:
Communication occurs by reading/writing shared state.

Question

Why would you see this more in imperative programming
languages rather than functional ones?

Message-passing concurrency:
Communication occurs by sending/receiving on channels.

That said, message passing can be:

Synchronous: Sending has to wait for the receiver.
Asynchronous: Sending “leaves a message” for the receiver.

5

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Shared Variables and Synchronisation

If you don’t synchronise different threads’ accesses to shared
variables, you can end up with unwanted behaviour.

var x := 0

while x < 20 do while x > −20 do
var p := x ; var q := x ;
x := p + 1; x := q − 1;

Question

How many loop iterations?
Who knows! Plus, data races are undefined behaviour in C!

Data races are unsynchronised concurrent accesses to shared
variables by different threads.

6

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Atomicity of Critical Sections

The basic unit of synchronisation we would like to implement is to
group multiple steps into one atomic step, called a critical section.
A sketch of the problem can be outlined as follows:

forever do forever do
non-critical section non-critical section
pre-protocol pre-protocol
critical section critical section
post-protocol post-protocol

The non-critical section models the possibility that a process may
do something else. It can take any amount of time (even infinite).

Our task is to find a pre- and post-protocol such that certain
atomicity properties are satisfied.

7

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Desiderata for Critical Sections

We want to ensure two main properties for critical sections:

Mutual Exclusion No two processes are in their critical
section at the same time.

Eventual Entry (or starvation-freedom) Once it enters its
pre-protocol, a process will eventually be able to execute its
critical section.

Question

Which is safety and which is liveness?
Mutex is safety, Eventual Entry is liveness.

8

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Locks

The most common abstraction to ensure mutual exclusion of entry
to critical sections is locks. Typically a lock is abstracted into an
abstract data type, with two operations:

Taking the lock — the first exchange (step p2/q2)

Releasing the lock — the second exchange (step p4/q4)

var lock
forever do forever do
p1 non-critical section q1 non-critical section
p2 take (lock) q2 take (lock);
p3 critical section q3 critical section
p4 release (lock) q4 release (lock);

9

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Locks – Implementation Concerns (C)

C11 specifies extensions for mutex locking primitives.

These should be implemented with the help of
architecture-dependent hardware support, at assembly level.

Don’t try to home-roll mutex implementations by trying to
implement them with racy reads/writes in C itself!

Declaring variables volatile doesn’t help you!
volatile just means the compiler won’t optimise reads/writes
away, but racy reads/writes to volatile variables are still
undefined behaviour!

10

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Locks – Implementation Concerns (LCR)

When reasoning about the design of a synchronisation primitive,
we typically require that each statement only accesses (reads from
or writes to) at most one shared variable at a time. Otherwise, we
cannot guarantee that each statement is one atomic step.

This is called the limited critical reference restriction.

For example, for shared variable x and non-shared variable p:

x := x + 1 does not satisfy the LCR restriction.

p := x ; x := p + 1 does satisfy it.
(But it wouldn’t if p was also shared.)

11

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Locks – Implementation Concerns (primitives)

Then, to implement a suitable pre- and post-protocol to ensure
mutual exclusion and eventual entry, read the documentation on
atomic primitives for your target hardware.1

forever do forever do
non-critical section non-critical section
pre-protocol pre-protocol
critical section critical section
post-protocol post-protocol

Useful atomic primitives may include: CAS (compare-and-swap),
FAA (fetch-and-add), XCHG (exchange register/memory with
register), test-and-set instructions, etc.

1And take COMP3151/9154 Foundations of Concurrency when it starts
being offered again.

12

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Locks and Deadlock

But even with locks, you have to be careful because taking
multiple locks in a certain order can cause a concurrent program to
get stuck – in concurrent contexts, often called deadlock.

Example:

var A,B
forever do forever do
p1 non-critical section q1 non-critical section
p2 take (A); q2 take (B);
p3 take (B); q3 take (A);
p4 critical section q4 critical section
p5 release (B); q5 release (A);
p6 release (A); q6 release (B);

13

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Message Passing and Deadlock

In message passing concurrency, ensuring atomicity is less of an
issue because each thread chooses when it will interact with others
– communication is via send/receive APIs rather than shared state.

But getting stuck is still a concern.

Example

P waits to receive Q’s message; Q waits to receive P’s message
Deadlock!

14

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Session Types

A type system for processes that establish and communicate along
channels.
Dual types reflect behaviour on either side of the channel.

⊕ “plus” (w/ unit 0) vs N “with” (w/ unit ⊤)
– selecting vs offering a choice

⊗ “times” (w/ unit 1) vs O “par” (w/ unit ⊥)
– outputting vs inputting a process, then continuing

∃ (existential) vs ∀ (universal)
– sending vs receiving a type

? (client request) vs ! (server accept)
– requesting vs offering a process repeatedly

Correspondence to linear logic ensures freedom from deadlock.
(Threads can’t get stuck!)

15

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Duals and Units

Dual types reflect behaviour on either side of the channel.
We’ll use notation A⊥ for the dual of type A.

First we have that (A)⊥ = A⊥ and (A⊥)
⊥
= A. Then:

(A⊕ B)⊥ = A⊥ NB⊥

– select (vs offer) a choice between A and B

(A⊗ B)⊥ = A⊥ OB⊥

– output (vs input) a process of type A, then continue as B

These four type operators have their unit values, also related in
two pairs by dualities:

A⊕ 0 = A and AN⊤ = A and 0⊥ = ⊤ and ⊤⊥ = 0

A⊗ 1 = A and AO⊥ = A and 1⊥ = ⊥ and ⊥⊥ = 1
(unit ⊥ not to be confused with dual notation ⊥)

16

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Typing and Reduction of Units

For ⊕ and N, respectively, as (impossible) empty selection and
(trivial) empty choice:

(no rule for 0)
x .case() ⊢ Γ, x :⊤

⊤

For ⊗ and O, respectively, as empty output and empty input:

x [].0 ⊢ x : 1
1

P ⊢ Γ

x().P ⊢ Γ, x :⊥
⊥

Note: We’ll use Γ,∆,Θ for typing environments; ordering of
entries in session typing environments is ignored.

There is only a reduction rule for 1 with ⊥ (none for 0 with ⊤):

ch x .(x [].0 | x().P) =⇒ P (β1⊥)

17

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Selection and Choice

To type a process P that first transmits a request along channel x
to select from type A⊕ B, we invoke one of two rules:

P ⊢ Γ, x :A

x [inl].P ⊢ Γ, x :A⊕ B
⊕1

P ⊢ Γ, x :B

x [inr].P ⊢ Γ, x :A⊕ B
⊕2

The process offering the choice on channel x can then branch
between Q or R based on whether inl or inr was chosen:

Q ⊢ ∆, x :A⊥ R ⊢ ∆, x :B⊥

x .case(Q,R) ⊢ ∆, x :A⊥ NB⊥ N

Reduction rules:

ch x .(x [inl].P | x .case(Q,R)) =⇒ ch x .(P |Q) (β⊕N1)

ch x .(x [inr].P | x .case(Q,R)) =⇒ ch x .(P |R) (β⊕N2)

18

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Output and Input

To type a process that (1) outputs a request along channel x to
open a new channel y for process P :A, then (2) continues to
behave as process Q :B, we invoke this rule:

P ⊢ Γ, y :A Q ⊢ ∆, x :B

x [y].(P |Q) ⊢ Γ,∆, x :A⊗ B
⊗

The process that receives input channel name y along x then
executes R, which is allowed to communicate on both channels:

R ⊢ Θ, y :A⊥, x :B⊥

x(y).R ⊢ Θ, x :A⊥ OB⊥ O

Reduction rule:

ch x .(x [y].(P |Q) | x(y).R) =⇒ ch y .(P | ch x .(Q |R)) (β⊗O)

19

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Parallel Composition as Cut

To type the parallel composition of two processes P and Q
communicating along channel x , we require their types are dual.

P ⊢ Γ, x :A Q ⊢ ∆, x :A⊥

ch x : A. (P |Q) ⊢ Γ,∆
Cut

This rule is so named because it corresponds to the cut rule in
linear logic. (The blue parts are classical linear logic propositions.)

In general, cut rules in such logics are a way of composing proofs.

20

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Process Reduction as Cut Elimination

The dynamic semantics of session-typed processes then
corresponds to cut elimination: the simplification of linear logic
proofs so they don’t use the Cut rule as their final step.

Here are some resulting equivalences and simplifications:

ch x : A. (P |Q) ⊢ Γ,∆ ≡ ch x : A⊥. (Q |P) ⊢ Γ,∆ (Swap)

ch y .(ch x .(P |Q) |R) ⊢ Γ,∆,Θ ≡
ch x .(P | ch y .(Q |R)) ⊢ Γ,∆,Θ (Assoc)

(Omitting types now, as all this leaves them unchanged:)

ch x .(x [inl].P | x .case(Q,R)) =⇒ ch x .(P |Q) (β⊕N1)

ch x .(x [inr].P | x .case(Q,R)) =⇒ ch x .(P |R) (β⊕N2)

ch x .(x [y].(P |Q) | x(y).R) =⇒ ch y .(P | ch x .(Q |R)) (β⊗O)

21

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Dynamic Semantics Summary

For our chosen subset, we have equivalences:

ch x : A. (P |Q) ≡ ch x : A⊥. (Q |P) (Swap)
ch y .(ch x .(P |Q) |R) ≡ ch x .(P | ch y .(Q |R)) (Assoc)

In addition, we have the reduction rules for:

Selection and Choice

ch x .(x [inl].P | x .case(Q,R)) =⇒ ch x .(P |Q) (β⊕N1)
ch x .(x [inr].P | x .case(Q,R)) =⇒ ch x .(P |R) (β⊕N2)

Output and Input

ch x .(x [y].(P |Q) | x(y).R) =⇒ ch y .(P | ch x .(Q |R)) (β⊗O)

Empty Output and Input

ch x .(x [].0 | x().P) =⇒ P (β1⊥)

We now have enough to inspect some examples. (Demo)

22

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Deadlock Freedom of Session-Typed Processes

Let’s look at the Cut rule again:

P ⊢ Γ, x :A Q ⊢ ∆, x :A⊥

ch x : A. (P |Q) ⊢ Γ,∆
Cut

Question

Would ch x , y . (x(u).wait meal | y(v).wait payment) be
typeable using session types?
No.

Cut is the only rule that types parallel composition, and it only
permits processes P and Q to have one channel x between them.

This prevents any loops of communication like in the example
above, that can lead to deadlock.

23

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

A Typing Rule that Allows Deadlock

Conversely, suppose we were to extend session types with a
“BiCut” rule that permits two channels between P and Q.

P ⊢ Γ, x :A, y :B Q ⊢ ∆, x :A⊥ y :B⊥

ch x : A, y : B. (P |Q) ⊢ Γ,∆
BiCut

Then ch x , y . (x(u).wait meal | y(v).wait payment) would be
typeable using this rule, but the processes would immediately get
stuck waiting for each other.

24

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Concurrency Summary

Shared-variable concurrency is most often synchronised to
avoid data races to critical sections, using locks.

Providing locks requires careful implementation with:

operations that obey limited critical reference restrictions.
thorough knowledge of atomic hardware primitives.

Using locks carelessly is prone to deadlock.

Message-passing concurrency limits communication to explicit
APIs between processes, but is still prone to deadlock.

Session types for message-passing processes have a
correspondence to classical linear logic.

They have dual types to support, between processes
communicating over a channel:

selection/choice and output/input (covered today)
type polymorphism and service repetition (not covered today)

Processes prone to deadlock-causing communication loops via
multiple channels between them fail to typecheck.

25

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

Acknowledgements for Session Types

Today’s presentation was based on “Propositions as Sessions” by
Philip Wadler (2012, 2014), but session types go back to the 90s
(Honda, 1993), and linear logic back to the 80s (Girard, 1987).

Wadler continues a line of work by the above authors as well as

Abramsky (1994), Bellin and Scott (1994), Caires and
Pfenning (2010) and others on the correspondence between
classical linear logic and session types.

Honda, Kubo and Vasconcelos (1998), Gay and Vasconcelos
(2010) and others on a functional language with session types.

For more information including references to the others, see
Wadler’s conference paper and journal article of the same name.

26

https://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-sessions/propositions-as-sessions.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/propositions-as-sessions/propositions-as-sessions-jfp.pdf

Concurrency Shared-Variable Concurrency Message Passing and Session Types Summary

MyExperience

Please fill out the survey. It helps tremendously.

https://myexperience.unsw.edu.au

27

https://myexperience.unsw.edu.au

	Concurrency
	

	Shared-Variable Concurrency
	

	Message Passing and Session Types
	

	Summary
	

